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This paper discusses experiments and a theoretical model for the convective circulation 
driven by a surface buoyancy flux in a horizontal layer of fluid. The layer is closed at  
one end and, at  the other end, the buoyancy has a fixed value over a given depth. 
Such circulation occurs in side arms of cooling lakes used for waste-heat disposal from 
power generation. Some geophysical circulations, such as in the Red Sea, are also of 
the above type. 

The experiments were done in a 35 f t  long flume using heat transfer between the 
heated water and the atmosphere to generate the surface buoyancy flux. The observed 
circulation was characterized by two distinct layers flowing in opposite directions and 
separated by a density interface. For upper-layer depths less than about half the 
total depth at  the open end, the downflow was observed to be concentrated near the 
closed end. Circulation flowrates and vertical temperature profiles were measured. 

The theoretical model uses a ‘two-layer’ approach. The mass, momentum, and 
buoyancy conservation equations are integrated vertically on each side of the inter- 
face. Mass and buoyancy transfer across the interface are neglected. The interfacial 
shear stress is proportional to the square of the difference of the average layer vel- 
ocities. For small layer densimetric Froude numbers, the free surface is shown to be 
approximately horizontal and the problem reduces to one ordinary differential 
equation for the thickness of the upper layer. General solutions of this interface 
equation are presented for horizontal and sloping bottoms. Different configurations 
are possible depending on the nature of the singular points which occur in the phase 
plan. 

For the convective circulation, the interface is shown to go through a singular 
point. This condition leads to a simple analytical solution for the circulation flowrate 
in the case of constant surface buoyancy flux and horizontal bottom. This solution 
compares well with the experimental data and with measurements on the Red Sea 
circulation. 

1. Introduction 
The type of convective circulation considered in this paper is shown schematically 

in figure 1.  It is driven by a surface buoyancy flux, B, in a horizontal layer of fluid 
closed at  one end and at  the other end of which the buoyancy, b = - g ( p - p R ) / p R ,  
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Surface buoyancy flux B 

FIGURE 1 .  Shallow horizontal convective Circulation. 

has a fixed value b, over a depth H, from the top. In the definition of b, g is the acceler- 
ation of gravity, p is the local fluid density (averaged over turbulent fluctuations), and 
pR is a reference density. The,length of the layer is L,  the depth at  the open end is H ,  
and the possibility of a constant bottom slope, S, is included. Only the case of a 
shallow layer of fluid is considered in which the upper current is vertically well- 
mixed by the turbulence resulting from the unstability generating surface buoyancy 
flux. Lateral uniformity is assumed, leading to a two-dimensional problem in the 
vertical plane. 

The circulation described above occurs in the side arms of cooling lakes used for the 
disposal of waste heat from power generation. Side arms occur from the flooding of 
tributary valleys when the cooling lake was formed by darning a river. Knowledge 
of the circulation characteristics is required for the prediction of the thermal response 
of the lake to the waste heat loading. In  this case, the surface buoyancy flux, B, is 
due to the surface heat flux, (energy per unit area per unit time) and is given by 

in which = ( -  l /p)  ap/aT is the thermal expansion coefficient of the fluid there, 
water), and C, is its specific heat. The net heat flux across a water surface is the al- 
gebraicsumof individual fluxes due to radiation, both from the surroundings and from 
the water surface, convection, and evaporation. The net flux is, therefore, dependent 
upon the water surface temperature, T,, and various parameters characterizing the 
conditions above the surface. For outdoor situations, the latter are typically the air 
temperature, the relative humidity, the solar flux, and angle above the water surface 
(which affects reflexion), the cloud cover (which affects atmospheric radiation), and 
the wind speed. Each of the individual heat fluxes can be calculated, with varying 
degrees of empiricism, see Ryan, Harleman & Stolzenbach (1974), but the following 
expression, introduced by Edinger & Geyer (1965) provides a useful approximate 
dependence of the net flux upon the water surface temperature, given a set of metero- 
logical conditions: 
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is counted positively upwards, k is a heat-flux coefficient, and In  this expression, 
T E  is the equilibrium temperature. Equations (1) and (2) lead to 

B = k(b,-bE) (3) 

where b, and b,  are the values of buoyancy corresponding to T,  and TE. By taking the 
reference density, p R ,  used in the definition of buoyancy equal to the density of water, 
p B ,  a t  equilibrium temperature, (3) further simplifies to 

B = kbS. (4) 

Both this case and that of a constant surface buoyancy flux will be considered in the 
analysis presented in 3 3. 

Another example of the type of convective circulation under study here is that of 
the Red Sea. In  this case, the surface buoyancy flux is the result of the surface heat 
flux and the increase in salt concentration resulting from evaporation. Phillips (1966) 
presented a similarity analysis of this circulation assuming a constant surface buoyancy 
flux. The analysis leads to the two-dimensional distributions of the velocity and 
buoyancy which, however, involve unknown similarity functions. The measured 
vertical buoyancy profiles presented by Phillips show rather smooth variations and 
in particular do not exhibit the sharp gradient observed in cooling lake side arms and 
which is an essential element of the two-layer model developed here. The results of 
the two analyses do, however, present interesting similarities which will be returned 
to. Another major difference is the fact that Phillips does not impose any boundary 
condition at  the entrance of the circulation region, a t  x = 0 in figure 1. The experi- 
ments described in the following section and the later analysis show that the depth, 
H,, of the thermocline a t  x = 0 is a major controlling parameter. 

2. Experimental study 
A drawing of the set-up used for the circulationexperiments is presented infigure2. 

The set-up was composed of an insulated flume 2-5 ft wide, 1 ft deep, and of adjustable 
length up to 35 ft, connected to a large rectangular basin designed to provide fixed 
entrance boundary conditions, in addition to the abrupt expansion-contraction 
present in the field situations described in 5 1 .  The driving surface buoyancy flux was 
produced by the heat flux associated with the atmospheric cooling of heated water. 
This heated water was introduced at the surface of the large basin through a discharge 
device designed to minimize the horizontal momentum and mixing. This device 
consisted of a hopizontal board, topped with rubberized horsehair as energy dissipator. 
An equal amount of water was withdrawn through an outflow manifold placed trans- 
versally in the basin & inch above the floor. The outflow rate was controlled by a 
cylindrical outflow weir which ensured a constant water level in the system and, 
therefore, equal inflow and outflow. 

Starting from a uniform temperature in the system, a flow of prescribed magnitude 
and temperature was introduced. This procedure differs from the initial formulation 
of the problem in which the thermocline depth is fixed and the circulation flowrate 
is unknown. However, at steady state, the thermocline depth, H,,, established itself 
in the basin, and was then measured. The time required to reach steady state was 

5-2 
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FIGURE 2 .  Schematic drawing of experimental set-up. 

Temperatures ( O F )  

8 
I 

I 

FIGURE 3. Vertical temperature profiles for two experimental runs. (a) L = 34.6 ft, TE = 71 "F, 
k = 2.8 x lop6 ft  s-l. ( b )  L = 34.6 ft,  TE = 70 O F ,  k = 2.1 x 10-6 ft 8-1. 
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typically 6 to 8 hours. The flow field and the temperature distribution in the side arm 
were then measured. 

Temperatures were measured in two ways: A set of 50 stationary thermistor probes 
distributed in vertical arrays on the flume centre-line recorded instantaneous tem- 
perature distributions in the system a t  fixed points. Also, continuous vertical tempera- 
ture profiles were obtained via a motorized fast response thermistor probe linked to  
an x, y plotter. Vertical temperature profiles obtained in this way are reproduced in 
figure 3 for two experimental runs. The velocity field was explored by taking successive 
photographs, through the Plexiglas side walls of the flume, of the traces produced by 
the dissolution of dye crystals dropped in the water. 

The laboratory meteorological parameters needed to determine the heat flux across 
the water surface are the air temperature and relative humidity. Both were monitored 
during the experimental runs. The surface heat flux was then calculated using the 
concepts and formulae recommended by Ryan et al. ( 1974) .  To check these calculations, 
the equilibrium temperature was also measured in a shallow bucket, insulated on the 
sides and bottom and left permanently in the vicinity of the flume. Comparison with 
computed values was satisfactory. Full details on these calculations, which lead to 
the values of k and T,, are presented by Brocard, Jirka & Harleman (1977) .  

The majority of the experiments were performed for the basic case of a side arm 
with a horizontal bottom. The effects of a bottom slope on the circulation were studied 
in an additional series of runs with a longitudinally constant bottom slope reaching 
the surface a t  the closed end so that S = H / L .  The parameters and results of the runs 
are presented in tabular form by Brocard et al. (1977) .  They are plotted in dimension- 
less form in figure 11, where they are compared with the predictions of the mathematical 
model developed thereafter. 

The major qualitative results and observations derived from these experiments are 
as follows: 

1 .  With the low velocities encountered in the experiments, the Reynolds number 
of the flow remained small and shear generated turbulence was absent so that only 
the upper layer was turbulent, because of the surface cooling instability. This fact 
appears in the vertical temperature profiles obtained with the travelling probe which 
are presented in figure 3. They generally exhibit a vertically well-mixed upper layer 
and a very smooth profile in the lower layer, typical of laminar conditions. 

2. Figure 3 shows the two possible circulation regimes set forth by the experiments. 
For shallow entrance upper layer depths (approximately H,/H less than 0*5),  the 
temperature profiles in the lower layer fall almost on top of each other, indicating a 
longitudinally constant temperature and consequently very little downflow before 
the closed end. By contrast, runs with deep upper layer, show varying lower layer 
temperatures, which can only be attributed to continuous downflow from the upper 
layer. These results are confirmed by the flow measurements. For shallow upper layer, 
the layer flow is actually observed to slightly increase towards the end (approximately 
10 % from the entrance to half length) pointing to some turbulent entrainment by the 
upper layer. For deeper entrance upper-layer depths, flow measurements indicate a 
decrease of the flow of up to 30 yo between the entrance and half-length point. 

3. When the upper-layer depth was shallow a t  the entrance, it increased slightly 
towards the end of the side arm whereas, when it  was deep a t  the entrance, the upper 
layer decreased rapidly to final values close to  half depth. 
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4. The interfacial and bottom heat flux were calculated and found to be much 
smaller than the surface heat flux. 

Overall, the experimental results and observations point to the ‘ two-layer ’ structure 
of the circulation with a large temperature and, therefore, buoyancy gradient separ- 
ating two layers and little flow across this interface. This is particularly true for the 
case of shallow upper layer where the downflow is restricted to the close neighbourhood 
of the closed end. The case of deep upper layer presents significant downflow starting 
at the entrance, and if this does not preclude the application of two-layer flow theory, 
it poses the additional problem of determining the magnitude and distribution of the 
downflow. 

3. Two-layer model for stratified flows 
Based upon the experimental observations, a model involving the ‘two layer’ 

scheme is developed for the buoyancy-flux driven circulation. First, however, the 
governing equations are derived and studied in general terms. The two-layer approach 
is based on the fact that a sharp stable buoyancy gradient tends to inhibit vertical 
transfers of momentum and mass and can, therefore, be seen as an interface between 
two layers. This schematization, which is shown in figure 4, was introduced by Schijf & 
Schonfeld (1 953) and was successfully applied to a number of stratified flow problems 
in hydraulics (Rigter 1970; Hsu & Stolzenbach 1975), and in oceanography (Welander 
1974; Long 1975). The equations governing two-layer flows are obtained by vertically 
integrating the mass, momentum and buoyancy conservation equations on each 
side of the interface and expressing them in terms of layer-averaged variables. This 
procedure leads to the following: 

q db 1- y ( b , - b i )  = -B+Bi ,  
ax 

with 
bi = b, for If$ < 0, bi = b,  for > 0. 

Here h, and h, are the upper- and lower-layer depths and hb is the bottom elevation 
above a horizontal datum, q1 and q, are the upper- and lower-layer flowrates per unit 
width defined by 

hb i hs hi i h,+ hb 
u d z  and q2 = 

“ = / ? b b  
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FIGURE 4. Schematized two-layer flow. 

and b, and b, are the vertically averaged layer buoyancies. All these quantities are 
functions of the longitudinal abscissa x. The momentum-flux coefficients a1 and a, 
are assumed to be constant and are defined by 

hi +ha+ hb . ha + h, 

h i /  he + hb u2dz h2Shb u2dz 

udz ]2*  
2 ;  a 2 =  hi +h, +ha 

a1 = hi+ h d h b  

[!h2+hb udzl [%,+hb 

For turbulent flows, these coefficients are typically of the order of 1.05 and can be 
approximated by unity. For laminar velocity profiles, as present in the experiments 
described in 4 2, a1 and a, can reach significantly higher values and are kept here for 
generality. The bottom shear strees 7, is traditionally expressed in terms of the lower- 
layer flow rate as follows 

7 0  = 4 f o P ( Q 2 / h 2 ) 2 ,  (10) 

where$, is a friction factor which depends on the Reynolds number, R = q2 /v ,  and 
the bottom roughness. For laminar flow, fo = 4%/R,  while for turbulent flow, f o  
depends on the bottom roughness only and a typical value is 0.02. 

A number of interface related quantities have been introduced which need to be 
expressed in terms of the layer-averaged variables. The special nature of the interface 
is expected to make this possible through approximate relationships. The interfacial 
quantities to be estimated are the interfacial buoyancy flux, Bi, the horizontal and 
vertical components of the velocity a t  the interface, and K, and the interfacial 
shear stress, ri. 

The interfacial buoyancy flux, Bi, is due to molecular diffusion and, when one or 
both layers are turbulent, to the resulting entrainment of fluid from the other layer. 
Estimation of the former requires the knowledge of the thickness h* of the buoyancy 
gradient while the latter can be calculated based upon the experimental studies of 
Lofquist (1960) and Moore & Long (1971). These will also lead to the value of %, 
which represents the net entrained mass flux across the interface. Both molecular and 
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turbulent buoyancy and mass transfer across the interface play only a secondary role 
in the type of flows considered herein and will, therefore, be left out for simplicity. 
This approximation also avoids the need for estimating Ui. The interfacial shear 
stress, ri, is typically expressed as follows, by analogy with equation (10) : 

The somewhat limited basis for this expression leads to difficulties in the estimation 
of the interfacial friction factor, fi. For turbulent flows, fi would be expected to depend 
on the stability characteristics of the interface, measured by a Richardson number or 
rather, in the two-layer context, by the densimetric Froude numbers of the layers: 

Such a dependence has, however, not yet been clearly established. Karelse (1  974) 
reviewed experimental evaluations and correlation of the interfacial friction factor 
and recommends values of fi = 0.006 to 0.012 for counterflows. 

21 0,  and for the case of small 
buoyancy difference between the layers (b, - b, = Ab < g ) ,  the two-layer momentum 
equations, equations (6) and (7), can be transformed to the following, in which terms 
of the order Ablg are neglected: 

Utilizing these approximate expressions', including 

Also implied in the approximations leading to the above equations is the fact that the 
layer densimetric Froude numbers, Fl and F2, remain of order one at  most. This 
assumption is verified for the types of stratified flows with stable interface under 
consideration here. As shown by equation (13), these flows will be characterized by a 
practically horizontal, free surface. 

Characteristic values for the total depth, H ,  the flow rate per unit width, qo and 
the horizontal distance, L, are now introduced and used to define new dimensionless 
variables: 

If, as already assumed, the interfacial flow is neglected (K = O ) ,  the continuity 
equations, ( 5 ) ,  states that the layer flowrates q1 and q2 are constant and if qo is taken 
equal to the upper layer flow, it follows that q = 1. The flow differences, Aq, is also a 
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FIQURE 5. Nature of singular points of the interface equation 
for the case of a horizontal bottom. 

constant which becomes equal to zero in the case of equal counterflow. In  dimension- 
less form, the momentum equation becomes: 

a,(Aq- l), dr, h dr, 3 - h  
( Z - h ) 3  d X 2  dX 2 

sF5 
dh 
dX = 

--  - -s, d X  
dX 
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FI URE 6. Solutions of the interface equation with horizontal bottom and = 1.28 lo3, 
q o / k L  = 8 , f , ,L /H = 3. - - -, Locus of critical point; -. -, locus of points with zero interface 
slope. 

in which CL = fi/fo, 6, = sgn (Aq- l ) ,  ei = sgn (2  - A q )  and F$ = qt /b ,H3.  The 
buoyancy conservation equation for the upper layer, (S), becomes: 

dr, BL 
dX - qob,' 
- 

If equation (4) is used with b, = b, for the surface buoyancy flux B, and b, is the upper- 
layer buoyancy at  X = 0, the previous equation gives: 

kL 

Po 
r ,  = exp - - X .  

For the case of constant surface buoyancy flux, B = kb, leads to 

which is the first term in the linear expansion of (17) for small kL/q,. The buoyancy, 
r2, of the lower layer remains constant. 

In the foregoing equations for two-layer flows with surface buoyancy flux, it is 
equation (14) which governs the dynamics of the system. This equation is of the type 
dh/dX = P ( X ,  h ) / Q ( X ,  h) ,  where P and Q are functions of both X and h. Points 
(X, ,  h,) such that &(X,, h,) = 0 correspond to infinite interface slope and are, in the 
context of two-layer flows, called critical points. Although it is not clearly apparent 



Shallow horizontal convective circulation 139 

0.4 - 
h -.-. 

0.6 - 

0 0.2 0.4 0.6 0.8 1 .o 
X 

FIGURE 7, Solutions of the interface equation with horizontal bottom and = 1.28 x lo3, 
qo/kL = 12.8, f o L / H  = 3. ---, Locus of critical points; -.- , locus of points with zero 
interface slope. 

from the form of & ( X ,  h)  in equation (15), the critical condition, (& = 0 )  is equivalent 
to : 

q + F ;  = 1. (19) 

Critical points play an important role in two-layer flows. With an infinite interface 
slope, critical points will only occur at remarkable sections in the flow such as abrupt 
expansion and contractions, where equation (21) furnishes a boundary condition for 
the integration of the flow equations. Critical points also mark the boundary between 
the subcritical (F:+Fi < 1) and supercritical (F i+F;  > 1 )  regimes. Only in the 
former can the assumption of small interfacial entrainment (K E 0) be made. 

Other remarkable points in the X ,  h (phase) plane are the singular points (X,, h,) 
where P(X, h)  and & ( X ,  h)  are simultaneously equal to zero. The configuration of the 
solution curves in the neighbourhood of singular points depends on the nature of the 
roots of the characteristic equation: 

For the simple case of equal counterflow (Aq = 0) and horizontal bottom (fl = l ) ,  
the above equation involves a single dimensionless parameter grouping: k H / q o  fo, 
and leads to the configuration diagram presented in figure 5.  For the practical appli- 
cations mentioned in 3 1 ,  the values of kH/q ,  fo are typically smaller than 0.5 so that 
possible singular points will be saddle or nodal points. As the solution curves of equation 
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FIGURE 8. Solutions of the interface equation with a bottom slope s = 0.5 and B’i = 1.28 x 
qo /kL  = 8,  f o L / H  = 3. - - -, Locus of critical points; -.- , locus of points with zero interface 
slope. 

(15) in the phase plane are shapes of layer interfaces, the foregoing conclusion is in 
agreement with physical requirements which preclude focuses or vortex points. 

It can further be shown that, in the region of the phase plan of physical significance 
(0 < h < 1 and rl > r2) ,  either zero or two singular points (distinct or superposed) will 
exist and that, in the latter case, one will be a nodal point and the other one a saddle 
point. Two sets of solution curves corresponding to the above two cases are shown in 
figures 6 and 7 .  These solutions correspond to  varying surface buoyancy flux as given 
by equation (4) and equal counterflow. The longitudinal extend, which defines L, is 
chosen so as to have rl = 1 a t  X = 0 and rl = r2 at X = 1, i.e., r2 = exp- LLIy,. With 
otherwise equal values of FE and of the friction parameter f , L / H ,  the solution without 
singu1r.r point presented in figure 7 corresponds to a larger value of &,ILL and, there- 
fore, a smaller surface buoyancy flux, For exactly zero surface buoyancy flux, the 
locus of points with zero interface slope completely disappears towards X = - m. 

I n  the case of a sloping bottom, with equal counterflow, the possibility exists of 
zero, one, or two singular points. The locus of points with zero interface slope also has 
two possible shapes depending on the magnitude of the bottom slope compared to 
[( 1 + a)/a2]f,, L / 8 H .  One example of each case is given in figures 8 and 9. 
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itions of the interface equation with a bottom slope s = 1 and FE: = 1.28 x 0-3, 
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4. Two-layer convective circulation 
The experimental study described in 5 2 showed that for the type of shallow con- 

vective circulation under consideration, the downflow is concentrated near the closed 
end. A two-layer model is, therefore, applicable to the major part of the convective 
flow. In  this region, it was shown in the previous section that the free surface elevation 
and the lower-layer buoyancy can be assumed constant. The latter is unknown and so 
is the  circulation flowrate per unit width, qo. In dimensionless terms, it is convenient 
to represent the unknown flowrate by qo/kL. 

The lower-layer buoyancy in the two-layer flow region depends upon the down- 
flow distribution near the closed end. I n  this downflow region, the buoyancy con- 
servation equations, (8) and (9), become: 

giving 
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For the case of constant surface buoyancy flux, B, and for kL/qo( 1 - X )  < 1 if B varies 
as given by (4), the above equation gives 

dr 
ax r1-r2 = - ( l - X ) - A  

The upper-layer depth at X = 0 is equal to H, so that h(X = 0) = ho = H J H .  An 
additional condition is, however, required to allow the determination of qo/kL and 
of the interface shape by integration of (14). 

The two-layer flow regime is expected to persist until the flow becomes unstable. 
The parameter governing the stability of the flow is the Richardson number (see 
Turner 1977); but the vertical buoyancy and velocity profiles also influence stability. 
Based on average layer depth and layer buoyancy difference, the Richardson number 
is the inverse of the square of the Froude number and the highest Froude number for 
stable stratified flow is of the order of unity. Therefore, in the convective circulation, 
the two-layer flow regime will persist until or even beyond a critical point. At such a 
point, the interface slope is infinite except if this critical point is also a singular point. 
The experimental observation pointed to an almost horizontal interface near the 
closed end so that it is postulated that the interface does indeed go through a singular 
point. This singular condition is similar to that first used by Mass6 (1938) for the 
computation of free surface flows involving the transition from subcritical to super- 
critical conditions resulting for instance from the steepening of the bottom slope. 
This application is further discussed by Chow (1959). 

A t  the singular point, hereafter characterized by a subscript s, both the numerator 
and denominator of (14) are equal to zero. For the case of equal counterflow and 
introducing K = (k2L2)/(b0H3), this condition gives: 

For the case of a constant surface buoyancy flux, dr l / (dX)  is a constant and if the 
bottom is horizontal (s = 0) ,  If is also constant, equal to 1 if H is chosen equal to the 
total depth. Then, if the numerator of the interface equation, (14), is equal to zero at  
one point, it will remain equal to zero and the solution of the problem is given by (25) 
with h, = h,. The interface is horizontal and the circulation flowrate is given by: 

this can also be written 

according to which the circulation flowrate is independent of the length of the layer. 
This result is to be compared with that obtained by Phillips (1966) for the convective 
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circulation in the Red Sea. Using similarity arguments and a constant surface buoyancy 
flux, Phillips derived that the horizontal velocity is given by: 

u = B + ( x - L ) + ~ ( ~ / H )  (29) 

whereby the flow continually decreases from the entrance to the closed end. This 
result cannot be verified directly but measured vertical buoyancy profiles closely 
match the expression found by Phillips: 

The horizontality of the buoyancy interface inherent in this expression derives from 
the assumed form of the similarity functions. The agreement with measured data, 
however, corroborates this point, which is one of the results of the theory proposed in 
this paper. The reference density used for the definition of the buoyancy, b ,  in (30) 
is the fluid density a t  the closed end of the layer. With the same definition, the 
expression for the surface buoyancy variation resulting from the two layer model is: 

1 .  B t f L - x )  

in which the buoyancy varies linearly with distance from the closed end instead of 
with the $ power of this distance as in (30). With the inevitable scatter in the measured 
data, either expression can be considered to agree with measurements. The present 
theory, however, is complete, inasmuch as it does not contain undetermined constants 
and comparison with the numerical values calculated by Phillips for the similarity 
function g ( Z / H )  is possible. Comparing equations (30) and (31)  leads to an estimate 
of the average of g in the upper layer: 

f L  - x)f 
91 = 

H + f i  - a: -+- 
[4 i0  [ (It, 

The length of the Red Sea is equal to 2400 km so that an average value of (L - x) to 
be substituted in equation (32) is 1200 km. The depth of the entrance sill which plays 
a role equivalent to that of the layer depth H is 120 m. A typical value of the friction 
factor f,, is 0.02, while ho can be estimated to be approximately 4 based on the vertical 
profiles presented by Phillips. These numbers lead to g1 = 29 in equation (31) (with 
a: = 0.5), while the function plotted by Phillips for g ( z / H )  varies from 33 at the surface 
to 20 at half depth with an average of approximately 28 in the upper half. This agree- 
ment would tend to support the present theory. 

For the case of varying surface buoyancy flux or for sloping bottom, a closed form 
solution is no longer simple. The integration of the momentum (or interface), equation 
(14) presents a boundary value problem with boundary conditions at  X = 0 and at  
the singular point. A numerical shooting scheme was used for this integration and 
since the solution of the interface equation would tend to become unstable near a 
singular point, the adopted approach was to start integration at  the singular point. 
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FIGURE 10. Interface profiles and circulation flowrates for increasing bottom slopes with 
K = 2.0 x andf,,L/H = 3. (a) 8 = 0 ;  (b )  s = 0.3; (c) s = 0.5; (d) s = 1.0. 

The abscissa, X,, of the singular point can be obtained from the singular condition, 
(25) and (26), through use of equation (24): 

in which h* = h / 2  is the relative upper layer depth and 

If a value is assumed for h,*, X, can be calculated using the above equation and inte- 
gration of the interface equation can be carried out towards X = 0. Startup for the 
numerical integration procedure requires knowledge of the limiting value of dh/dX 
at the singular point. Using the notation of equation (20), this slope is given by the 
following second-degree equation. 
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FIQURE 11.  Comparison of measured convective circulation flowrates with two-layer model. 

Present study : 0, horizontal bottom, shallow upper layer; 0, horizontal bottom, deep upper 
layer; V, sloping bottom, shallow upper layer; V, sloping bottom, deep upper layer. Sturm (1976)  ; 
m, horizontal bottom, shallow upper layer. 

This equation has the same discriminant as (20) and, therefore, has two real solutions 
a t  saddle and nodal points. Only one of these solutions points inside the subcritical 
region and is retained. 

For varying surface buoyancy flux with horizontal bottom, the difference with the 
constant surface buoyancy flux solution should increase with increasing k L / q ,  as the 
longitudinal buoyancy distribution with constant surface buoyancy flux is the first 
term in the k L / q ,  equation of the varying buoyancy flux solution. For k L / q ,  up to 
0.3, the difference between the two solutions was generally found to be less than 5 %. 

For sloping bottom, the flowrate parameter, qo /kL ,  depends independently on four 
parameters; K, f , L / H ,  h,, and s. It is, therefore, not possible to present general 
results. Interface profiles and the corresponding circulation flowrates for several 
uniform bottom slopes with otherwise constant values of K, f , L / H ,  and h, are plotted 
in figure 10. For these values, it appears that a bottom slope results in a small reduction 
of the circulation flowrate. The reduction ratio does not, however, monotonously 
increase with increasing bottom slope. Similar qualitative resulte were obtained for a 
range of the parameters. 

Another interesting feature of this model is the fact that, for k H / q ,  f ,  less than 0.5 
and for large upper-layer depths, the singular point is a nodal point through which an 
infinity of solution curves (interfaces) pass. The solution scheme proposed above is, 
therefore, indeterminate. At the same time, it was observed experimentally t h a t  for 
large initial upper layer depths, downflow occurred starting a t  X = 0. A solution for 
this case would necessarily involve the downflow distribution which cannot be 
predicted by the present model. 
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Since i t  was found that the circulation Aowrate for varying surface buoyancy or 
sloping bottom varied only slightly from the constant surface buoyancy flux solution 
as given by equation (27), the results of the experiments described in 8 2 are compared 
to this solution in figure 11.  Also included in this comparison are data from experi- 
ments on a similar circulation performed by Sturm (1976). The agreement between 
measurements and the present theory is good, as much of the scatter can be explained 
by difficulties in the estimation of the surface buoyancy flux. 

Although the present model is not applicable for large initial upper-layer depths 
(approximately h, > 0-5), data points for experiments corresponding to this case have 
been included in figure 11. For these points, a value of h, = 0.5 was selected for 
substitution in (27). Agreement with the theory remains acceptable. 
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